INDIAN SCHOOL MUSCAT
FIRST TERM EXAMINATION
SEPTEMBER 2018 (23-09-2018)
CLASS XI
PHYSICS
MARKING SCHEME
SET A

$\begin{aligned} & \text { Q.N } \\ & 0 \end{aligned}$	Answers	Marks
1	Gravitational force < weak nuclear force < electromagnetic force < strong nuclear force	1M
2	1A.U.<1 light year < 1 parsec	1M
3	$[\mathrm{G}]=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$	1M
4	(a) 3 (b) 3	$1 / 2+1 / 2$
5	$\begin{aligned} & \mathrm{F}=9 \mathrm{~N} \\ & \mathrm{mv}-\mathrm{mu}=\mathrm{F} \times \mathrm{t}=9 \times 2=18 \mathrm{Kgms}^{-1} \end{aligned}$	$1 / 2+1 / 2$
6	Dimensional formula for force $\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}$ Converting 100N into dynes by using dimensional analysis $100 \mathrm{~N}=10^{7} \text { dyne }$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{M} \end{aligned}$
7	(a) $1: 3$ (b) Zero	$\begin{aligned} & \hline 1 \mathrm{M} \\ & 1 \mathrm{M} \end{aligned}$
8	$\begin{aligned} & \mathrm{T}_{1}=2 \mathrm{uSin} \theta / \mathrm{g}, \mathrm{~T}_{2}=2 \mathrm{uSin}(90-\theta) / \mathrm{g} \\ & \mathrm{~T}_{1} / \mathrm{T}_{2}=\operatorname{Tan} \theta \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{M} \end{aligned}$
9	 The distance covered by the object moving with uniform acceleration is given by the area of trapezium ABDOE Therefore, Area of trapezium ABDOE $=1 / 2 \times$ (sum of parallel sides) X distance between parallel sides) \Rightarrow Distance $(\mathrm{s})=1 / 2(\mathrm{DO}+\mathrm{BE}) \times \mathrm{OE}=1 / 2(\mathrm{DO}+\mathrm{BE}) \times \mathrm{OE}$ $\Rightarrow \mathrm{s}=1 / 2(\mathrm{u}+\mathrm{v}) \times \mathrm{t}---(\mathrm{iii})$ Now from equation (ii) $a=(v-u) / t$ $\therefore \mathrm{t}=(\mathrm{v}-\mathrm{u}) / \mathrm{a}---(\mathrm{iv})$ After substituting the value of t from equation (iv) in equation (iii) $\begin{aligned} & \Rightarrow 2 \mathrm{as}=(\mathrm{v}+\mathrm{u})(\mathrm{v}-\mathrm{u}) \Rightarrow 2 \mathrm{as}=(\mathrm{v}+\mathrm{u})(\mathrm{v}-\mathrm{u}) \\ & \Rightarrow 2 \mathrm{as}=\mathrm{v} 2-\mathrm{u} 2 \end{aligned}$	$1 / 2 \mathrm{M}$ $11 / 2 \mathrm{M}$
10	We know that horizontal range is maximum if the angle of projection is 45° and is given by $\mathrm{R}_{\text {max }}=\mathrm{u}^{2} / \mathrm{g}$ Here, $\mathrm{R}_{\text {max }}=100 \mathrm{~m}$ $\text { so, } \mathrm{u}^{2} / \mathrm{g}=100 \mathrm{~m}$	1 M

	If the cricketer throws the ball vertically upward then the ball will attain the maximum height from the ground $\mathrm{H}_{\max }=\mathrm{u}^{2} / 2 \mathrm{~g}=100 / 2=50 \mathrm{~m} .$	1M
11	First law from second law $\mathrm{F}=\mathrm{ma}$, if $\mathrm{F}=0$ i.e., $\mathrm{ma}=0 \mathrm{~m}$ is not equal to $0 \mathrm{a}=0$, this shows that a body at rest will continue to be rest or a body moving with uniform velocity will continue to move with the same velocity if no external force acts on it. Third law from second law: $\mathrm{F}_{12}=-\mathrm{F}_{21}$	1 M 1 M
12	Case (a) Mass of the monkey, $\mathrm{m}=40 \mathrm{~kg}$ Acceleration due to gravity, $g=10 \mathrm{~m} / \mathrm{s}$ Maximum tension that the rope can bear, Tmax $=600 \mathrm{~N}$ Acceleration of the monkey, $a=6 \mathrm{~m} / \mathrm{s} 2$ upward $\begin{aligned} & \mathrm{T}-\mathrm{mg}=\mathrm{ma} \\ & \therefore \mathrm{~T}=\mathrm{m}(\mathrm{~g}+\mathrm{a}) \\ & =40(10+6) \\ & =640 \mathrm{~N} \end{aligned}$ Since T > Tmax, the rope will break in this case. Case (b) $\mathrm{mg}-\mathrm{T}=\mathrm{ma}$ $\therefore \mathrm{T}=\mathrm{m}(\mathrm{~g}-\mathrm{a})$ $=40(10-4)$ $=240 \mathrm{~N}$ Since T<Tmax, the rope will not break in this case. Case (c) $\mathrm{a}=0$ $\mathrm{T}-\mathrm{mg}=\mathrm{ma}$ $\mathrm{T}-\mathrm{mg}=0$ $\therefore \mathrm{T}=\mathrm{mg}$ $=40 \times 10$ $=400 \mathrm{~N}$ Since T < Tmax, the rope will not break in this case. Case (d) When the monkey falls freely under gravity, its will acceleration become equal to the acceleration due to gravity, i.e., $a=g$ $\begin{aligned} & \mathrm{mg}-\mathrm{T}=\mathrm{mg} \\ & \therefore \mathrm{~T}=\mathrm{m}(\mathrm{~g}-\mathrm{g})=0 \end{aligned}$ Since T < Tmax, the rope will not break in this case. impulse $\mathrm{J}=\mathrm{F} \Delta \mathrm{T} \longrightarrow$ equation 1 We know that Force $(\mathrm{F})=$ ma putting this value of F in equation 1 , we get	$\begin{aligned} & 1 / 2+1 / 2 \\ & +1 / 2+ \\ & 1 / 2 \end{aligned}$

	$\mathrm{J}=\mathrm{ma} \Delta \mathrm{T} \longrightarrow$ equation 2 equation 2 can also be written as $\mathrm{J}=\mathrm{m} \Delta \mathrm{v} / \Delta \mathrm{T} X \Delta \mathrm{~T}$ now the value of $\mathrm{J}=\mathrm{m} \Delta \mathrm{V}$ $m \Delta v=$ change in linear momentum... $\mathrm{J}=\mathrm{m} \Delta \mathrm{~V}$ This is the relation between Impulse and momentum.	
13	$\mathrm{M}=\mathrm{k} \mathrm{V}^{\mathrm{a}} \rho^{\mathrm{b}} \mathrm{g}^{\mathrm{c}}$ where, k is a proportionality constant $[\mathrm{M}]=[\mathrm{V}]^{\mathrm{a}}[\rho]^{\mathrm{b}}[\mathrm{~g}]^{\mathrm{c}}$ Writing the dimensions of each physical quantity. $\begin{aligned} & M^{1} L^{0} T^{0}=\left(L^{1} T^{-1}\right)^{a}\left(M^{1} L^{-3}\right)^{b}\left(L^{1} T^{-2}\right)^{c} \\ & M^{1} L^{0} T^{0}=M^{b} L^{a-3 b+c} T^{-a-2 c} \end{aligned}$ On Comparing the powers on both sides of the above dimensional equation: $\begin{aligned} & b=1, a-3 b+c=0 \text { Hence, } a-3(1)+c=0 \\ & a+c=3-----------(i) \\ & -a-2 c=0-----(i i) \end{aligned}$ On solving (i) and (ii) $\begin{align*} & a+c=3------------(i i i) \tag{iii}\\ & -a-2 c=0---(i v) \end{align*}$ On adding (iii) and (iv) $-\mathrm{c}=3, \text { Hence, } \mathrm{c}=-3 \text {. }$ Substituting $\mathrm{c}=-3$ in equation (I), $\mathrm{a}=6 .$ Thus, $\mathrm{M}=\mathrm{k} \mathrm{V}^{6} \rho \mathrm{~g}$ $\therefore \mathrm{M}$ is proportional to the $6^{\text {th }}$ power of V if the mass of the largest (M) stone that can be moved by flowing river depends (i.e., directly proportional to) on velocity (v), the density (ρ), and acceleration due to gravity (g)	1 M
14	(a) a light-year is the distance that light travels in vacuum in one year . $11 \mathrm{y}=9.46 \times 10^{15} \mathrm{M}$ (b) Unit for b is ms^{-1} and unit for c is ms^{-2}	1 M 2 M
15	S - position of the planet D-Distance from the two viewpoints or observatories θ - parallax or parallactic angle For far away planet, $\mathrm{b} / \mathrm{D} \ll 1$ Hence, $A B$ is taken as an arc of length b and D is radius with S as center. So, $b=D \theta$ or $D=b / \theta$ Parallax method to determine distance of a planet	1 M 2 M

	(OR)	
16		$1+1+1$
17	$\begin{aligned} & \mathrm{U}=0, \mathrm{v}=180 \mathrm{~km} / \mathrm{hr}=180 \times 5 / 18=50 \mathrm{~m} / \mathrm{s}, \mathrm{t}=25 \mathrm{~s} \\ & \mathrm{v}=\mathrm{u}+\mathrm{at} \\ & 50=0+\mathrm{a} \times 25 \\ & \mathrm{a}=2 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{M} \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\mathrm{s} \& =\mathrm{ut}+1 / 2 \mathrm{at}^{2} \\
\mathrm{~s} \& =0+1 / 2 \times 2 \times 625 \\
\& =625 \mathrm{~m}=0.625 \mathrm{~km}
\end{aligned}
\] \& 1M \\
\hline 18 \& \begin{tabular}{l}
The horizontal range is maximum when the angle of projection is \(45^{\circ}\).
\(\square\) \\
Maximum height for angle of projection \(\square\) is, × \(\square\) \\
Therefore, from equation (1) and (2),
\[
\mathrm{R}=4 \mathrm{H}
\] \\
Range is 4 times the maximum height attained by a projectile
\end{tabular} \& 1 M
1 M

1 M \\

\hline 19 \& | (a) A unit vector is a vector of magnitude of one, sometimes also called a direction vector. The unit vector having the same direction as a given vector. |
| :--- |
| (b) $\mathbf{A} \times \mathbf{B}=0$ Which shows that \mathbf{A} is parallel to \mathbf{B} | \& 1 M

2 M \\

\hline 20 \& | Angle of repose is defined as the minimum angle made by an inclined plane with the horizontal such that an object placed on the inclined surface just begins to slide. |
| :--- |
| Relation between Angle of Friction and Angle of Repose |
| Let us consider a body of mass ' m ' resting on a plane. |
| Also, consider when the plane makes ' θ ' angle with the horizontal, the body just begins to move. |
| Let ' R ' be the normal reaction of the body and ' F ' be the frictional force. |
| Here, $\begin{aligned} & m g \sin \theta=-\mathrm{F} \longrightarrow(\text { i }) \\ & m g \cos \theta=-\mathrm{R} \longrightarrow \text { (ii) } \end{aligned}$ |
| Dividing equation (i) by (ii) $\frac{m g \sin \theta}{m g \cos \theta}=\frac{-F}{-R}$ $\text { Or, } \operatorname{Tan} \theta=\frac{F}{R}$ |
| $\operatorname{Tan} \theta=\mu$, | \& 1 M

2 M \\
\hline 21 \& (i) apparent weight, $\mathrm{N}=\mathrm{W}=\mathrm{mg}=75 \times 10=750 \mathrm{~N}$ \& 1M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
(ii) \(\mathrm{N} / \mathrm{g}=750 / 10=75 \mathrm{~kg}\) \\
(iii) \(\mathrm{N}=\mathrm{m}(\mathrm{g}-\mathrm{a})=75(10-5)=375 \mathrm{~kg}\)
\end{tabular} \& \[
\begin{aligned}
\& \hline 1 \mathrm{M} \\
\& 1 \mathrm{M} \\
\& \hline
\end{aligned}
\] \\
\hline 22 \& \begin{tabular}{l}
When you push there is one component of force that adds to the weight of the body and hence there is more friction. When you pull the vertical component of force is against the weight of body and hence there is less overall friction. So it is easy to pull than push an object.
\[
\mathrm{N}=\mathrm{Mg}+\mathrm{F} \sin \theta
\] \\
Pulling is more effective. You must know that the friction experienced by a body is directly proportional to the normal force acting on it.
\[
\mathrm{N}=\mathrm{Mg}-\mathrm{F} \sin \theta
\]
\end{tabular} \& 1 M \\
\hline 23 \& \begin{tabular}{l}
According to the Newton's 2nd Law of motion, the rate of change of linear momentum of a body is directly proportional to the applied external force and in the direction of force. \\
Now According to Newton's 2nd Law of Motion: \\
Force is directly proportional to rate of change of momentum, that is \\
F \(\alpha \mathrm{dp} / \mathrm{dt}\) \\
\(\mathrm{F}=\mathrm{kdp} / \mathrm{dt}\) \\
\(\mathrm{F}=\mathrm{kd}(\mathrm{mv}) / \mathrm{dt}\) \\
\(\mathrm{F}=\mathrm{kmd}(\mathrm{v}) / \mathrm{dt}\) \\
\(\mathrm{F}=\mathrm{kma}\) \\
Experimentally \(\mathrm{k}=1\) \\
\(\mathrm{F}=\mathrm{k} \mathrm{ma}\) \\
Which is the required equation of force.
\end{tabular} \& 1 M

2 M \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 24 \& \begin{tabular}{l}
Consider a plane is inclined to the horizontal at an angle \(\Theta\). Let the body placed on the inclined plane slide down with an acceleration a, then \\
The reaction \(\mathrm{R}=\mathrm{mg} \cos \Theta \quad-----\)-Eqn (1) \\
Net force on the body down the inclined plane \(=f=m g \sin \Theta-F\) \\
\(\mathrm{f}=\mathrm{ma}=\mathrm{mg} \sin \Theta-\mu \mathrm{R}\) as \(\mu=\mathrm{F} / \mathrm{R}\)---- Eqn (2) \\
Now substitute for R , from equation (1) \\
\(m a=m g \sin \theta-\mu m g \cos \theta=m g(\sin \theta-\mu \cos \theta)\) \\
\(\mathbf{a}=\mathbf{g}(\sin \boldsymbol{\theta}-\mu \boldsymbol{\operatorname { c o s } \theta})\) \\
The acceleration of the body down a rough inclined plane is always less than the acceleration due to gravity g . that is \(\mathrm{a}<\mathrm{g}\)
\end{tabular} \& 1 M

2 M \\

\hline 25 \& | (i) Relative velocity is defined as the time rate of change of relative position of one object with respect to another. |
| :--- |
| Case (i) If the two objects A and B are moving with same velocity [$\mathrm{v} 1=\mathrm{v} 2$] |
| Case(ii): Relative velocity is positive $\left(\mathbf{v}_{\mathbf{2}}-\mathbf{v}_{\mathbf{1}}\right)$ is positive Position |
| (ii) Speed of the jet airplane, $v_{\text {jet }}=500 \mathrm{~km} / \mathrm{h}$ |
| Relative speed of its products of combustion with respect to the plane, $v_{\text {smoke }}=-1500 \mathrm{~km} / \mathrm{h}$ |
| Speed of its products of combustion with respect to the ground $=v_{\text {smoke }}^{\prime}$ Relative speed of its products of combustion with respect to the airplane, $V_{\text {smoke }}=\stackrel{V}{V}_{\text {smoke }}^{\prime}-V_{\text {jet }}$ | \& 1 M \\

\hline
\end{tabular}

	$-1500=v_{\text {smoke }}^{\prime}-500$ $v_{\text {smoke }}^{\prime}=-1000 \mathrm{~km} / \mathrm{h}$ The negative sign indicates that the direction of its products of combustion is opposite to the direction of motion of the jet airplane. (OR) (i) To find the the distance travelled in nth sec. find the distance travelled in n seconds, which is- $\begin{equation*} \mathrm{S}(\mathrm{n})=\mathrm{un}+1 / 2 \mathrm{an}^{2} \ldots \tag{i} \end{equation*}$ Then find the distance travelled in (n-1) seconds. So, $\begin{equation*} \mathrm{S}(\mathrm{n}-1)=\mathrm{u}(\mathrm{n}-1)+1 / 2 \mathrm{a}(\mathrm{n}-1)^{2} \tag{ii} \end{equation*}$ Now to find distance travelled in n seconds, substract (ii) from (i). This gives us the distance travelled in nth seconds. $\mathrm{S}_{\mathrm{nth}}=\mathrm{u}+\mathrm{a}(2 \mathrm{n}-1) / 2$ (ii) $2 u+17 a=48$ $2 u+13 a=40$ On solving above equations, we get $\mathrm{a}=2 \mathrm{~ms}^{-2} \quad \mathrm{u}=7 \mathrm{~ms}^{-1}$ Distance travelled in $15^{\text {th }}$ second is 36 m	3 M
26	(i) Definition of projectile Let a body is projected with speed $\mathrm{u} \mathrm{m} / \mathrm{s}$ inclined θ with horizontal line Then, vertical component of $u,=u \cos \theta$ Horizontal component of $u,=u \sin \theta$ acceleration on horizontal, $\mathrm{ax}=0$ acceleration on vertical, ay $=-\mathrm{g}$ $\begin{aligned} & x=u \cos \theta \cdot t \\ & t=x / u \cos \theta-----(1) \\ & y=u \sin \theta t-1 / 2 g t^{2} \end{aligned}$ Put equation (1) here, $y=u \sin \theta \times x / u \cos \theta-1 / 2 g \times x^{2} / u^{2} \cos ^{2} \theta$	1 M 2 M

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
=\tan \theta \mathrm{x}-1 / 2 \mathrm{gx}^{2} / \mathrm{u}^{2} \cos ^{2} \theta
\] \\
\(y=A x-B x^{2}\) which is the equation of parabola hence path of a projectile is parabola.
\[
\text { (ii) Range }=u^{2} \sin (2 \alpha) / g
\]
\[
45 \quad 30^{2} \sin (2 \alpha) / 10
\]
\[
45=900 \sin (2 \alpha) / 10
\]
\[
45=90 \sin (2 \alpha)
\]
\[
\sin (2 \alpha)=1 / 2
\]
\[
2 \alpha=30^{\circ} \text { or } 150^{\circ}
\]
\[
\alpha=15^{\circ} \text { or } 75^{\circ}
\] \\
(OR) \\
(i)Derivation for time of flight \(T=2 u \sin \theta / g\) and Range \(R=u^{2} \sin 2 \theta / g\). \\
(ii) \(\mathrm{R}=\mathrm{u}^{2} \sin 2 \theta / \mathrm{g}\).
\[
\mathrm{R}=9.8 \times 9.8 \sin (2 \times 45) / 9.8=9.8 \mathrm{~m}
\]
\end{tabular} \& \\
\hline 27 \& \begin{tabular}{l}
(i) Law of conservation of momentum states that total momentum of system remains conserved in the absence of external force. \\
Proof: \\
Consider a body of mass m1 moving with velocity striking against another body of mass m2 moving with velocity. \\
Let, the two bodies remain in contact with each other for a small interval . \\
Let, be the average force exerted by mass m 1 on m 2 and let be the force on m 2 due to m 1 . Let, v 1 and v 2 be the velocities of two bodies after collision. \\
Momentum of mass m 1 before collision \(=\mathrm{m} 1 \mathrm{u} 1\) \\
Momentum of mass m 2 after collision \(=\mathrm{m} 2 \mathrm{u} 2\) \\
Momentum of mass m 1 after collision \(=\mathrm{m} 1 \mathrm{v} 1\) \\
By using the definition of impulse, change in momentum of mass m 1 is,
\end{tabular} \& 1 M

2 M \\
\hline
\end{tabular}

$$
\begin{align*}
& \overrightarrow{\mathrm{F}}_{12} \Delta t=m_{1} \vec{v}_{1}-m_{1} \vec{u}_{1} \quad \ldots(1) \\
& \text { Change in momentum of mass } m_{2} \text { is, } \\
& \overrightarrow{\mathrm{F}}_{21} \Delta t=m_{2} \vec{v}_{2}-m_{2} \vec{u}_{2} \tag{2}
\end{align*}
$$

Adding equations (1) and (2), we have

$$
\left(\vec{F}_{12} \Delta t+\overrightarrow{\mathrm{F}}_{21} \Delta t\right)=\left(m_{1} \vec{v}_{1}-m_{1} \vec{u}_{1}\right)+\left(m_{2} \vec{v}_{2}-m_{2} \vec{u}_{2}\right)
$$

$\Rightarrow\left(\vec{F}_{12}+\vec{F}_{21}\right) \Delta t=\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)-\left(m_{1} \vec{u}_{1}-m_{2} \vec{u}_{2}\right)$
Since, \vec{F}_{12} and \vec{F}_{21} are equal and opposite,

$$
\vec{F}_{12}+\vec{F}_{21}=0
$$

Thus, $\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)=\left(m_{1} \vec{u}_{1}-m_{2} \vec{u}_{2}\right)$
Momentum after collision $=$ Momentum before collision
Hence, momentum of isolated system is conserved.
(ii) From the law of conservation of momentum ;
$M V+m v=0$
[$M=$ mass of gun
$\mathrm{V}=$ Recoil velocity
$\mathrm{m}=$ mass of shell
$\mathrm{v}=$ muzzle velocity $]$
$10 \times \mathrm{V}=-0.02 \times 80$
$V=-1.6 \div 10$
$V=-0.16 \mathrm{~m} / \mathrm{s}$
Recoil velocity $=0.16 \mathrm{~m} / \mathrm{s}$
(OR)

(a) Particle moving in circular path of radius r

(b) Vector diagram of velocities

	Derivation for $\mathrm{F}=\mathrm{mv}^{2} / \mathrm{r}$ (ii) Let m is the mass of the bullet $\mathrm{M}=$ mass of the gun. $\mathrm{v}=$ velocity of the bullet $\mathrm{V}=$ velocity of recoil of gun before firing the gun and the bullet, both are at rest , therefore linear momentum before firing will be 0. the sum of linear momentum before firing will be equal to mv+MV acc to the principle of conservation of linear momentum , the total linear momentum after firing should also be equal to 0. therefore mv $+\mathrm{MV}=0$ or $\mathrm{V}=-\mathrm{mv} / \mathrm{M}$	1 M

