INDIAN SCHOOL MUSCAT

FIRST TERM EXAMINATION

SEPTEMBER 2018 (23-09-2018)

CLASS XI

PHYSICS

MARKING SCHEME SET A

Q.N	Answers	Marks
Ō.		
1		1M
	Gravitational force < weak nuclear force < electromagnetic force < strong nuclear force.	
2	1A.U.< 1 light year < 1 parsec	1M
3	$[G] = [M^{-1} L^{3} T^{-2}]$	1M
4	(a) 3 (b) 3	$\frac{1}{2} + \frac{1}{2}$
5	F = 9N	1/2 + 1/2
	$mv-mu = F x t = 9 X 2 = 18 Kgms^{-1}$	
6	mv- $mu = F x t = 9 X 2 = 18 Kgms-1Dimensional formula for force M^1L^1T^{-2}$	1M
	Converting 100N into dynes by using dimensional analysis	1M
	$100N = 10^7 dyne$	
7	(a) 1:3	1M
	(b) Zero	1M
8	$T_1 = 2uSin \theta/g, T_2 = 2uSin(90 - \theta)/g$	1M
	$T_1/T_2 = \operatorname{Tan} \theta$	1M
9	v	½ M
	Adoctiv	
	Time 8	
	The distance covered by the object moving with uniform acceleration is given by the area of	1½M
	trapezium ABDOE	1721V1
	Therefore, Area of trapezium ABDOE	
	=1/2×(sum of parallel sides) X distance between parallel sides) ⇒ Distance (s) =1/2(DO+BE)×OE=1/2(DO+BE)×OE	
	$\Rightarrow s=1/2(u+v)\times t(iii)$ Now from equation (ii) $a=(v-u)/t$	
	Now noin equation (ii) $a=(v-u)/t$ $\therefore t=(v-u)/a(iv)$	
	After substituting the value of t from equation (iv) in equation (iii)	
	After substituting the value of t from equation (iv) in equation (iii) $\Rightarrow 2as = (v+u)(v-u) \Rightarrow 2as = (v+u)(v-u)$	
	$\Rightarrow 2as = (v+u)(v-u) \Rightarrow 2as = (v+u)(v-u)$ $\Rightarrow 2as = v2-u2$	
10	We know that horizontal range is maximum if the angle of projection is 45° and is given by	
10	$R_{\text{max}} = u^2 / g$	
	$R_{\text{max}} = u / g$ $Here, R_{\text{max}} = 100 \text{ m}$	1M
	so, $u^2/g = 100 \text{ m}$	1171
	50, u / 5 - 100 III	

	If the cricketer throws the ball vertically upward then the ball will attain the maximum height	
	from the ground	13.4
1.1	$H_{\text{max}} = u^2 / 2g = 100 / 2 = 50 \text{ m}.$	1M
11	First law from second law $F = ma$, if $F = 0$ i.e., $ma = 0$ m is not equal to 0 a $= 0$, this shows that a body at rest will continue	1M
	to be rest or a body moving with uniform velocity will continue to move with the same velocity if	
	no external force acts on it.	13.4
	Third law from second law:	1M
10	$F_{12} = -F_{21}$	1/ . 1/
12	Case (a)	$\frac{1}{2} + \frac{1}{2}$
	Mass of the monkey, $m = 40 \text{ kg}$	+ 1/2 +
	Acceleration due to gravity, $g = 10 \text{ m/s}$	1/2
	Maximum tension that the rope can bear, $Tmax = 600 \text{ N}$	
	Acceleration of the monkey, $a = 6 \text{ m/s} 2 \text{ upward}$	
	T-mg=ma	
	=40(10+6)	
	= 640 N	
	Since T > Tmax, the rope will break in this case.	
	Case (b)	
	mg - T = ma	
	$\dot{T} = m (g - a)$	
	=40(10-4)	
	= 240 N	
	Since T < Tmax, the rope will not break in this case.	
	Case (c)	
	a = 0.	
	T-mg=ma	
	T - mg = 0	
	:T = mg	
	$=40\times10$	
	= 400 N	
	Since T < Tmax, the rope will not break in this case.	
	Case (d)	
	When the monkey falls freely under gravity, its will acceleration become equal to the acceleration	
	due to gravity, i.e., $a = g$	
	mg - T = mg	
	:T = m(g - g) = 0	
	Since T < Tmax, the rope will not break in this case.	
	(OR)	
	impulse $J=F\Delta T$ ———equation 1	
	We know that Force(F)=ma	
	putting this value of F in equation 1,we get	2M
		<u> </u>

	J=maΔT——equation 2	
	equation 2 can also be written as $J=m\Delta v/\Delta T X \Delta T$	
	now the value of $J=m\Delta V$	
	$m\Delta v$ =change in linear momentum	
	J=m\Delta V This is the relation between Impulse and momentum	
	This is the relation between Impulse and momentum.	
13	$M = k V^a \rho^b g^{c}$, where, k is a proportionality constant	1M
	[M] = [V] ^a [ρ] ^b [g] ^c Writing the dimensions of each physical quantity.	
	$M^{1}L^{0}T^{0} = (L^{1}T^{-1})^{a}(M^{1}L^{-3})^{b}(L^{1}T^{-2})^{c}$	
	$M^{1}L^{0}T^{0} = M^{b}L^{a-3b+c}T^{-a-2c}$	
	On Comparing the powers on both sides of the above dimensional equation:	
	b = 1, $a - 3b + c = 0$ Hence, $a - 3(1) + c = 0a + c = 3$ (i) -a - 2c = 0(ii)	1M
	On solving (i) and (ii) $a + c = 3$ (iii) $-a - 2c = 0$ (iv) On adding (iii) and (iv) $-c = 3$, Hence, $c = -3$. Substituting $c = -3$ in equation (I), $a = 6$.	
	Thus, $M = k V^6 \rho g$ \therefore M is proportional to the 6 th power of V if the mass of the largest (M) stone that can be moved by flowing river depends (i.e., directly proportional to) on velocity (v), the density (ρ), and acceleration due to gravity (g)	1M
14	(a) a light-year is the distance that light travels in vacuum in one year .	1M
	$11y = 9.46 \times 10^{15} M$	23.4
15	(b) Unit for b is ms ⁻¹ and unit for c is ms ⁻²	2M 1M
13	S – position of the planet D – Distance from the two viewpoints or observatories θ – parallax or parallactic angle For far away planet, b/D << 1 Hence, AB is taken as an arc of length b and D is radius with S as center. So, b = Dθ or D = b/θ	2M
	Parallax method to determine distance of a planet	

S = 0 + ½ x 2 x 625		$s = ut + \frac{1}{2}at^2$	
The horizontal range is maximum when the angle of projection is 45°. The horizontal range is maximum when the angle of projection is 45°. IM Maximum height for angle of projection is, (2) Therefore, from equation (1) and (2), R = 4H Range is 4 times the maximum height attained by a projectile (a) A unit vector is a vector of magnitude of one, sometimes also called a direction vector. (b) A X B = 0 Which shows that A is parallel to B 2M Angle of repose is defined as the minimum angle made by an inclined plane with the horizontal such that an object placed on the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes 'θ' angle with the horizontal, the body just begins to move. Program in the plane makes 'θ' angle with the horizontal, the body just begins to move. Program in the plane makes 'θ' angle with the horizontal force. Here, mgsinθ = F → > (i) mgcosθ = R → > (ii) Dividing equation (i) by (ii) mgsinθ mgcosθ = P → R Or, Tanθ = F/R Tanθ = μ,			1M
The horizontal range is maximum when the angle of projection is 45°. IM Maximum height for angle of projection is, (1) Maximum height for angle of projection is, (2) Therefore, from equation (1) and (2), R = 4H Range is 4 times the maximum height attained by a projectile 19 (a) A unit vector is a vector of magnitude of one, sometimes also called a direction vector. (b) A X B = 0 Which shows that A is parallel to B 2M Angle of repose is defined as the minimum angle made by an inclined plane with the horizontal such that an object placed on the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes 'θ' angle with the horizontal, the body just begins to move. 2M Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here, mgsinθ = F (i) mgcosθ = R (ii) Dividing equation (i) by (ii) mgsinθ (ii) mgsinθ (iii) Tanθ = F/R Tanθ = μ,			1111
Maximum height for angle of projection Images Imag	18		1M
Maximum height for angle of projection is, Image		*** Company of the Co	1M
Therefore, from equation (1) and (2), R = 4H Range is 4 times the maximum height attained by a projectile (a) A unit vector is a vector of magnitude of one, sometimes also called a direction vector. The unit vector having the same direction as a given vector. (b) A X B = 0 Which shows that A is parallel to B 2M Angle of repose is defined as the minimum angle made by an inclined plane with the horizontal such that an object placed on the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes 'θ' angle with the horizontal, the body just begins to move. R R R R R R R R R R R R R			
Therefore, from equation (1) and (2), R = 4H Range is 4 times the maximum height attained by a projectile (a) A unit vector is a vector of magnitude of one, sometimes also called a direction vector. The unit vector having the same direction as a given vector. (b) A X B = 0 Which shows that A is parallel to B 2M Angle of repose is defined as the minimum angle made by an inclined plane with the horizontal such that an object placed on the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes 'θ' angle with the horizontal, the body just begins to move. Relation between Angle of Friction and Angle of Repose Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here, mgsinθ = -F -> (i) mgcosθ = -R -> (ii) Dividing equation (i) by (ii) mgsinθ mgcosθ = -F Tanθ = μ,		× management and appropriate to the state of	
Therefore, from equation (1) and (2), R = 4H Range is 4 times the maximum height attained by a projectile (a) A unit vector is a vector of magnitude of one, sometimes also called a direction vector. The unit vector having the same direction as a given vector. (b) A X B = 0 Which shows that A is parallel to B 2M Angle of repose is defined as the minimum angle made by an inclined plane with the horizontal such that an object placed on the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes 'θ' angle with the horizontal, the body just begins to move. R In the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes 'θ' angle with the horizontal, the body just begins to move. 2M The interfere, in the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here, mgsinθ = -F — > (i) mgcosθ = -R — > (ii) Dividing equation (i) by (ii) mgcosθ = -F — > (ii) mgcosθ = -F — - R Or, Tanθ = F/R Tanθ = μ,			1M
Range is 4 times the maximum height attained by a projectile (a) A unit vector is a vector of magnitude of one, sometimes also called a direction vector. The unit vector having the same direction as a given vector. (b) A X B = 0 Which shows that A is parallel to B 2M Angle of repose is defined as the minimum angle made by an inclined plane with the horizontal such that an object placed on the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes 'θ' angle with the horizontal, the body just begins to move. 2M Project Pr			1111
(a) A unit vector is a vector of magnitude of one, sometimes also called a direction vector. The unit vector having the same direction as a given vector. (b) A X B = 0 Which shows that A is parallel to B 2M 2N Angle of repose is defined as the minimum angle made by an inclined plane with the horizontal such that an object placed on the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes 'θ' angle with the horizontal, the body just begins to move. 2M Provided Here, magsinθ = -F \(\text{mgsinθ} = -F \(mgs			
The unit vector having the same direction as a given vector. (b) $\mathbf{A} \times \mathbf{B} = 0$ Which shows that \mathbf{A} is parallel to \mathbf{B} 2M 20 Angle of repose is defined as the minimum angle made by an inclined plane with the horizontal such that an object placed on the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes '\theta' angle with the horizontal, the body just begins to move. 2M 2M Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here,		Range is 4 times the maximum height attained by a projectile	
(b) A X B = 0 Which shows that A is parallel to B 2M 20 Angle of repose is defined as the minimum angle made by an inclined plane with the horizontal such that an object placed on the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes '\theta' angle with the horizontal, the body just begins to move. 2M 2M 2M 1M 1M 1M 1M 1M 1M 1M	19		1M
Angle of repose is defined as the minimum angle made by an inclined plane with the horizontal such that an object placed on the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes '\theta' angle with the horizontal, the body just begins to move. 2M Propose Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here,			
Angle of repose is defined as the minimum angle made by an inclined plane with the horizontal such that an object placed on the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes 'θ' angle with the horizontal, the body just begins to move. 2M Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here, mgsinθ = -F — > (i) mgcosθ = -R — > (ii) Dividing equation (i) by (ii) mgsinθ = -F/mgcosθ = -F/R Or, Tanθ = F/R Tanθ = μ,		(b) $\mathbf{A} \times \mathbf{B} = 0$ Which shows that \mathbf{A} is parallel to \mathbf{B}	21/4
such that an object placed on the inclined surface just begins to slide. Relation between Angle of Friction and Angle of Repose Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes ' θ ' angle with the horizontal, the body just begins to move. 2M Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here,	20	Angle of repose is defined as the minimum angle made by an inclined plane with the horizontal	
Let us consider a body of mass 'm' resting on a plane. Also, consider when the plane makes ' θ ' angle with the horizontal, the body just begins to move. 2M Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here, $mgsin\theta = -F \longrightarrow (i)$ $mgcos\theta = -R \longrightarrow (ii)$ Dividing equation (i) by (ii) $mgsin\theta = \frac{F}{R}$ Or, $Tan\theta = \frac{F}{R}$ $Tan\theta = \mu$,			
Also, consider when the plane makes ' θ ' angle with the horizontal, the body just begins to move. 2M Also, consider when the plane makes ' θ ' angle with the horizontal, the body just begins to move. Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here,			
Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here,			2M
Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here,			Z1 V1
Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here,		_	
Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here,			
Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here,			
Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here,			
Let 'R' be the normal reaction of the body and 'F' be the frictional force. Here,		▼ \	
Here,			
$mgsin\theta = -F \longrightarrow (i)$ $mgcos\theta = -R \longrightarrow (ii)$ Dividing equation (i) by (ii) $\frac{mgsin\theta}{mgcos\theta} = \frac{-F}{-R}$ $Or, Tan\theta = \frac{F}{R}$ $Tan\theta = \mu,$		· ·	
$mgcos\theta = -R \longrightarrow (ii)$ Dividing equation (i) by (ii) $\frac{mgsin\theta}{mgcos\theta} = \frac{-F}{-R}$ $Or, Tan\theta = \frac{F}{R}$ $Tan\theta = \mu,$			
Dividing equation (i) by (ii) $ \frac{\text{mgsin}\theta}{\text{mgcos}\theta} = \frac{-F}{-R} $ Or, $\tan\theta = \frac{F}{R}$ $ \tan\theta = \mu, $			
$\frac{\text{mgsin}\theta}{\text{mgcos}\theta} = \frac{-F}{-R}$ $\text{Or, Tan}\theta = \frac{F}{R}$ $\text{Tan}\theta = \mu,$			
Or, $Tan\theta = \frac{F}{R}$ $Tan\theta = \mu,$		$mgsin\theta -F$	
Or, $Tan\theta = \frac{F}{R}$ $Tan\theta = \mu,$		$\frac{\sigma}{\sigma} = \frac{\sigma}{R}$	
Tan $\theta = \mu$,		mgcoso -k	
Tan $\theta = \mu$,		P.	
Tan $\theta = \mu$,		Or $Tan\theta = \frac{r}{r}$	
		R	
		$Tan\theta = u$	
21 (i) apparent weight, $N = W = mg = 75 \times 10 = 750N$ 1M		Ταπο – μ,	
	21	(i) apparent weight, $N = W = mg = 75 \times 10 = 750N$	1M

	(ii) $N/g = 750/10 = 75kg$	1M
	(iii) $N = m(g-a) = 75(10-5) = 375kg$	1 M
22	When you push there is one component of force that adds to the weight of the body and hence there is more friction. When you pull the vertical component of force is against the weight of body and hence there is less overall friction. So it is easy to pull than push an object. $F \cos \theta$ $F \sin \theta$	1M 1M
	$\stackrel{\downarrow}{m}_{g}$	
	$N = Mg + F \sin \theta$	
	Pulling is more effective. You must know that the friction experienced by a body is directly proportional to the normal force acting on it.	
	$F\cos\theta$ $f\sin\theta$ $f\sin\theta$ $f\sin\theta$ $f\sin\theta$	1M
	$N = Mg-Fsin\theta$	
23	According to the Newton's 2nd Law of motion, the rate of change of linear momentum of a body is directly proportional to the applied external force and in the direction of force. Now According to Newton's 2nd Law of Motion: Force is directly proportional to rate of change of momentum, that is	1M
	$F \alpha dp/dt$	
	F = k dp/dt	2M
	F = k d(mv)/dt	2111
	F = k md(v)/dt	
	F = k ma	
	Experimentally k =1	
	F = k ma Which is the required equation of force.	

24	1	1 1 1/1
24	Consider a plane is inclined to the horizontal at an angle Θ . Let the body placed on the inclined plane slide down with an acceleration a, then The reaction $R = mg \cos \Theta$ Eqn (1) Net force on the body down the inclined plane = $f = mg \sin \Theta - \mu$ R as $\mu = F/R$ Eqn (2) Now substitute for R , from equation (1) $ma = mg \sin \Theta - \mu mg \cos \Theta = mg(\sin \Theta - \mu \cos \Theta)$ a = $g(\sin \Theta - \mu \cos \Theta)$ The acceleration of the body down a rough inclined plane is always less than the acceleration due to gravity g . that is $a < g$	1M 2M
25	(i) Relative velocity is defined as the time rate of change of relative position of one object	1M
23	with respect to another.	1101
	Case (i) If the two objects A and B are moving with same velocity [v1 = v2]	13.6
	Object B X(t)	1M
	Case(ii): Relative velocity is positive ($\mathbf{v}_2 - \mathbf{v}_1$) is positive Position of Object A Object B Time of meeting Object B	1M
	Time	
	(ii) Speed of the jet airplane, $v_{\text{jet}} = 500 \text{ km/h}$	
	Relative speed of its products of combustion with respect to the plane, $v_{\text{smoke}} = -1500 \text{ km/h}$	
	Speed of its products of combustion with respect to the ground = v'_{smoke}	2M
	Relative speed of its products of combustion with respect to the airplane,	
	$V_{\rm smoke} = V'_{\rm smoke} - V_{\rm jet}$	
	Раде	7 of 11

$v'_{\rm smoke} - 500$ - 1000 km/h tive sign indicates that the direction of its products of combustion is opposite to the of motion of the jet airplane.	
(OR) and the the distance travelled in nth sec. find the distance travelled in n seconds, -	3M
n + 1/2 an ² (i)	SIVI
nd the distance travelled in (n-1) seconds.	
u(n-1) +1/2 a (n-1) ² (ii)	
find distance travelled in n seconds, substract (ii) from (i). This gives us the travelled in nth seconds.	
+ a (2n-1)/2.	
7a = 48 13a = 40 13a = 40	
travelled in 15 th second is 36m	2M
Definition of projectile	1M
body is projected with speed u m/s inclined θ with horizontal line	2M
, vertical component of u , = $ucos\theta$	
zontal component of u , = $u\sin\theta$	
eration on horizontal, $ax = 0$	
eration on vertical, ay = -g	
$\cos\theta$.t	
$u\cos\theta$ (1)	
$\sin\theta t - 1/2gt^2$	
quation (1) here,	
$\sin\theta \times x/u\cos\theta - 1/2g \times x^2/u^2\cos^2\theta$	
	-1000 km/h tive sign indicates that the direction of its products of combustion is opposite to the of motion of the jet airplane. (OR) d the the distance travelled in nth sec. find the distance travelled in n seconds, $-1 + 1/2 \text{ an}^2 (i)$ d the distance travelled in (n-1) seconds. $-1 + 1/2 \text{ an}(n-1)^2 (ii)$ dind distance travelled in n seconds, substract (ii) from (i). This gives us the travelled in nth seconds. $-1 + 1/2 \text{ an}(n-1)^2 (ii)$ and $-1 + 1/2 \text{ an}(n-1)^2 (iii)$ from (i). This gives us the travelled in nth seconds. $-1 + 1/2 \text{ an}(n-1)^2 (iii)$ from (ii) and the second in

	$= \tan\theta x - 1/2gx^2/u^2\cos^2\theta$	
	$y=Ax-Bx^2$ which is the equation of parabola hence path of a projectile is parabola.	
	(ii) Range = $u^2 \sin(2\alpha)/g$	2M
	45 $30^2 \sin(2\alpha)/10$	
	$45 = 900 \sin(2\alpha)/10$	
	$45 = 90\sin(2\alpha)$	
	$\sin(2\alpha) = 1/2$	
	$2\alpha = 30^{\circ} \text{ or } 150^{\circ}$	
	$\alpha = 15^{\circ} \text{ or } 75^{\circ}$	
	(OR)	
	(i)Derivation for time of flight $T = 2u\sin\theta/g$ and Range $R = u^2\sin 2\theta/g$.	(1½+
	(ii) $R = u^2 \sin 2\theta / g$.	1½)
	$R = 9.8 \times 9.8 \sin(2x45)/9.8 = 9.8 m$	2M
27	(i) Law of conservation of momentum states that total momentum of system remains conserved in the absence of external force. Proof: Consider a body of mass m1 moving with velocity striking against another body of mass m2 moving with velocity. Let, the two bodies remain in contact with each other for a small interval . Let, be the average force exerted by mass m1 on m2 and let be the force on m2 due to m1. Let, v1 and v2 be the velocities of two bodies after collision. Fig. Fig. m. m. m. vi i vi Momentum of mass m1 before collision = m1u1 Momentum of mass m2 after collision = m2 u2 Momentum of mass m1 after collision = m1v1 By using the definition of impulse, change in momentum of mass m1 is,	1M 2M

$$\vec{F}_{12} \Delta t = m_1 \vec{v}_1 - m_1 \vec{u}_1 \dots (1)$$

Change in momentum of mass m2 is,

$$\vec{F}_{21} \Delta t = m_2 \vec{v_2} - m_2 \vec{u}_2$$
 ...(2)

Adding equations (1) and (2), we have

Since, \vec{F}_{12} and \vec{F}_{21} are equal and opposite,

$$\vec{F}_{12} + \vec{F}_{21} = 0$$

Thus,
$$(m_1\vec{v_1} + m_2\vec{v_2}) = (m_1\vec{u}_1 - m_2\vec{u}_2)$$

Momentum after collision = Momentum before collision

Hence, momentum of isolated system is conserved.

(ii) From the law of conservation of momentum;

MV + mv = 0

[M= mass of gun

V = Recoil velocity

m = mass of shell

v = muzzle velocity]

$$10 \times V = -0.02 \times 80$$

$$V = -1.6 \div 10$$

$$V = -0.16 \text{ m/s}$$

Recoil velocity = 0.16 m/s

- (a) Particle moving in circular path of radius r
- (b) V ector diagram of velocities

2M

Derivation for $F = mv^2/r$	
(ii) Let m is the mass of the bullet $M = mass$ of the gun. $v = velocity$ of the bullet $V = velocity$ of recoil of gun before firing the gun and the bullet , both are at rest , therefore linear momentum before firing will be 0 . the sum of linear momentum before firing will be equal to $mv+mV$ acc to the principle of conservation of linear momentum , the total linear momentum after firing should also be equal to 0 .	1M 2M
therefore $mv + MV = 0$ or $V = -mv/M$	2M